If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-5.76=0
a = 1; b = 5; c = -5.76;
Δ = b2-4ac
Δ = 52-4·1·(-5.76)
Δ = 48.04
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{48.04}}{2*1}=\frac{-5-\sqrt{48.04}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{48.04}}{2*1}=\frac{-5+\sqrt{48.04}}{2} $
| x^2/3+2x-2=0 | | 21+2=30-c | | 6+c=5+7 | | 5(3w+1)/2=-11 | | m^2-84=0 | | 8=4(8+x) | | -2(d+8)=-20 | | -26=2u-20 | | -3y+19=-5 | | 4(w-3)=-40 | | 24x-7=5 | | 14t-1=-16+15t | | 8x+35=59 | | 15c+-17c=-8 | | -6t=7-7t | | 4(h-13)=12 | | 11-9b=-10b | | 5x^2+28x+36=0 | | 11=z/4−-9 | | -19+10y=-9y | | -18-20z=-5z+18-18z | | -10+3v=10-2v | | 3=10n=-7+8n | | (5/9)x+(1/3)=(5/6)x | | 3h=4h-6 | | -8p+8+9p=-10-p | | a➗6+6=11 | | -10v-6=4v | | -3n+4=-2n+9 | | 6n-3=-10-n | | 6n−3=-10−n | | (4)/(2x-1)=(3)/(3-x) |